MILK - WHITE GOLD

Authors

- Amira El Seidy
- Adel Ibrisimovic
- Raphael Klarn
- Alexander Klein
- Jana-Lia Kraule
- Tobias Müller
- Daniel Presinell
- Victoria Sattler
- Michael Waldner
- Leonie Wallner

All students attend the 9th class

EUROCIENCIA JOVEN: May 09-10, 2022

Head of Project Julia Marchl

Organisation

- Julia Marchl
- Martina Gräßl

Science Team

- Silke Guggenberger
- Sabine Seidl

www.europaymnasium.at

TABLE OF CONTENTS

01 02 MILK **RESEARCH QUESTIONS AND GOALS** • **PRODUCTION OF RICOTTA THEORETICAL BACKGROUND DETERMINATION OF MILK PROTEINS IN RICOTTA** 03 **TITRATION OF LACTIC ACID IN YOGURT PHENOMENON EMULSION**

Europagymnasium

KLAGENFURT

CHAPTER 01

Research Questions Research Goals Theoretical Background

RESEARCH QUESTIONS

Chapter 2:

- What can acid do to ricotta?
- What is the science behind it?
- Biuret Reaction: How easy it is to determine proteins?

RESEARCH QUESTIONS

Chapter 3:

- How is the surface tension in milk broken?
- What do tensides have to do with it?

Chapter 4:

- How much lactic acid is in yoghurt?
- How can we calculate the result of the titration?

RESEARCH GOALS

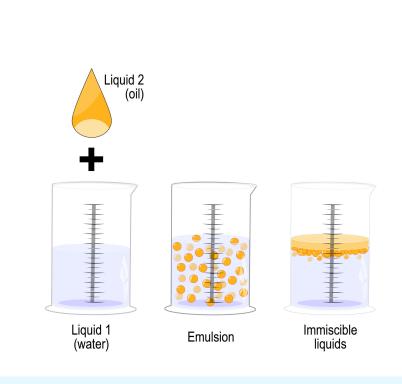
Chapter 2

- Production of ricotta (and whey) from plain whole milk
- Understanding the principle of denaturation (coagulation of casein)
- Experience how to determine proteins
- Improving teamwork
- Gaining scientific experience

RESEARCH GOALS

Chapter 3:

• Discovering what an emulsion is and how it works


Chapter 4:

- Understanding the principle of titration
- Calculating how much lactic acid is in yoghurt

WHICH COMPONENTS IS MILK COMPOSED OF?

- Milk is an emulsion of fat and water which is also a colloidal suspension of proteins.
- Milk contains different types of proteins floating in the liquid.
- Further components are minerals, sugars (i.e. lactose), vitamins...
- It contains fat in form of droplets with an average size of 3 to 4 micrometres.
- Bacteria are also included in raw milk which causes it to become sour.

EMULSION

WHY IS MILK WHITE ?

- It contains many different types of proteins.
- The main type is casein.
- Micelles are formed.
- They scatter light because of their small diametre-
- Effect: The milk seems to be white.

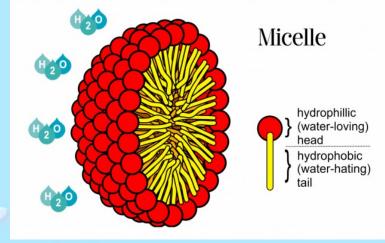


Figure 2.Structure of a micelle [www.beauty-euro.com]

LACTOSE

- A sugar found in milk
- Can be fermented to form lactic acid
- Lactose-intolerance: inability to digest lactose

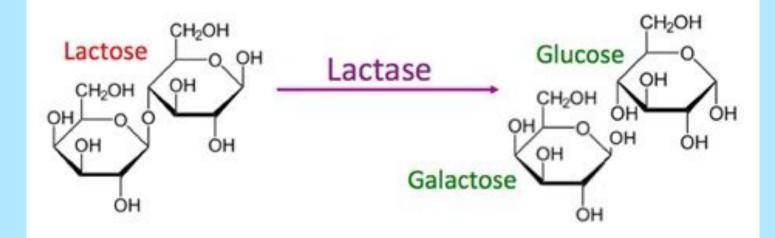


Figure 3.Enzymatical decomposition of lactose [www.apotheke-balsthal.ch]

EMPIRICAL DATA

Experiments

CHAPTER 02

- Production of Ricotta
- Determination of milk proteins in cream cheese

QUESTIONS & GOALS

Research questions

- What can acid do to ricotta?
- What is the science behind it? <u>Biuret Reaction:</u>
- How easy it is to determine proteins?

Research goals

- Production of ricotta (and whey) from plain whole milk
- Understanding the principle of denaturation (coagulation of casein)
- Experience how to determine proteins
- Improving teamwork
- Gaining scientific experience

WHAT MATERIALS DO I NEED TO PRODUCE SELF-MADE RICOTTA?

Raw Materials:

- Milk: the higher the fat content, the more ricotta you get.
- Since the milk is heated to 80°C anyway, it can also be raw.
- Of course, whey is also be obtained as a by-product.
- Acidifier: freshly squeezed lemon juice, apple or white wine vinegar.

Helpful Utensils:

- Thermometer: to find the right temperature for the heated milk.
- Sieve + tea towel: are needed to separate the whey (liquid) from the curd (solid).

Ingredients:

In addition to a total time of 25 minutes until the ricotta is made, you also need:
 <u>1</u>: 2 litres of whole milk <u>2</u>: 6 tablespoons lemon juice (approx. 2 lemons)

PREPARATION

- Pour milk into a saucepan and heat it.
 Stir regularly with a wooden spoon so that the milk is heated evenly.
- Using a thermometer, heat the milk to 80°C and add lemon juice.
- The milk will now begin to curdle (the protein and the whey separate from each other) and a curd forms on the surface.

Figure 4. Heating [photos taken by students]

Figure 5. Denaturation of the casein [photos taken by students]

- Continue heating the milk to 90°C.
- Take the pot off the stove and let it cool down a bit for 10 minutes.
- Once this is done, all you have to do is place the curds in a bowl using a sieve and tea towel and separate the ricotta from the whey. The finished ricotta can be used immediately.

Figure 6. Separated proteins and wheat [photos taken by students]

Figure 7. Fresh ricotta [photos taken by students]

WHAT HAPPENS?

- By adding acid, milk separates into its solid and liquid components
- After removing the whey, all that's left is cream cheese (the protein)

Science behind it:

- Milk is mostly made up of water, in which carbohydrates, proteins (e.g. casein), vitamins and trace elements are dissolved
- It also contains fat in the form of small droplets

DISCUSSION

The fat and protein content (diagram) of milk depends on:

- Where it comes from?
- Which variety it is?

Whole milk from the cow contains among other components proteins and an average of around 3.5% fat.

By adding acid, milk separates into its solid (cream cheese) and liquid (whey) components: the proteins change their shape and denaturate.

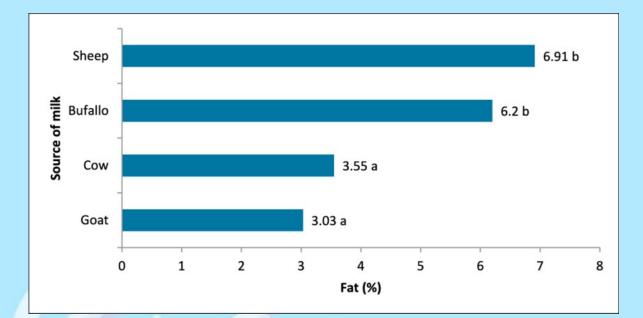


Figure 8. Fat content of selected milk sources [www.researchgate.com]

BIURET REACTION Qualitative determination of proteins

Proving that ricotta contains proteins

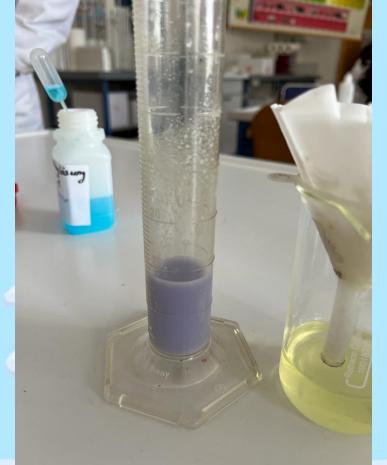
WHAT MATERIALS DO I NEED TO DETECT PROTEINS?

Materials:

- Glass rod
- Beaker (with the ricotta)
- Measuring zylinder
- Pipettes

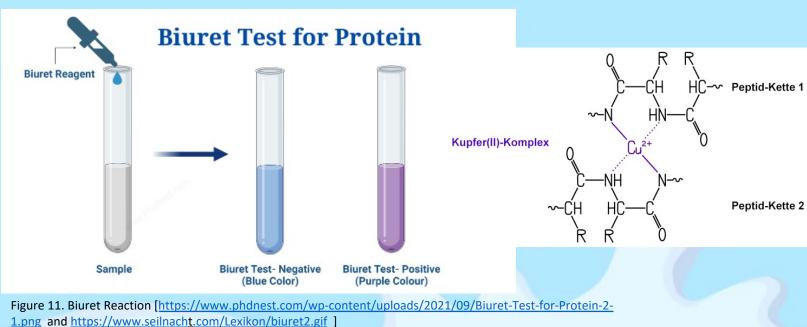
Biuret chemical:

- Sodium hydroxide solution (NaOH 10%)
- Copper sulfate solution (CuSO₄)



PROCEDURE

- The ricotta from the beaker is placed in the measuring cylinder and diluted with water
- 3ml of colourless concentrated sodium hydroxide solution (NaOH) is added to the ricotta.
- Then a few drops of the light blue copper-(II)-sulfate
 solution are added
- solution are added.
- The mixture becomes purple.



DISCUSSION

The casein, which is a protein, reacts with the Biuret reactants by building a purple complex due to the peptide bonds.

CHAPTER 03 DANCING COLOURS & EMULSION

QUESTIONS AND GOALS

Research questions:

- How is the surface tension in milk broken?
- What do tensides have to do with it?

Research Goal:

• Discovering what an emulsion is and how it works

MATERIALS

Figure 13. Materials for dancing colours [photos taken by students]

- Food colour
- Small beakers with water and food colours

Europagymnasium KLAGENFURT

- Cotton swabs
- Pipettes

- ¹/₄ litre whole milk
- plate
- Washing up liquid (dish soap)
- Water

HOW TO DO IT!

- Pour some milk into the plate until the bottom is covered.
- Mix the food colour with a few spoons of water until the food colour is not thick anymore.
- Add a few drops of each food colour with a pipette to the milk.
- Make sure the drops of paint are close together and roughly in the center of the plate.
- Dip one cotton swab into the milk until it is well wetted.
- Touch the dots of colour with the in milk wetted cotton swab.
- Dip another cotton swab in dish soap and touch the paint dots again with the cotton swab.

Figure 14 . Process of the experiment dancing colours [video taken by students]

OBSERVATION

Europagymnasium KLAGENFURT

Figure 15 . Video of the experiment dancing colours [video taken by students]

- When the milk is touched by the cotton swap with just water on it, nothing happens.
- When the milk is touched by the cotton swap with dish soap on it, the colours burst away on the surface of the liquid.

DISCUSSION

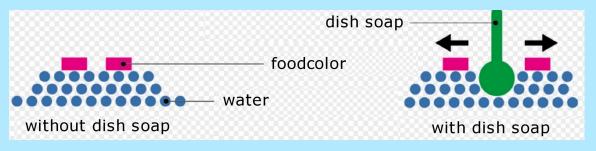


Figure 16 . Colour on milk [https://www.simplyscience.ch/kids/experimente/fliehende-farben#modal-28328]

- Adding water has no effect on the milk
- Milk contains water and fat
- Tensides: molecules with hydrophilic head and hydrophobic tail
- Fat and water get separated
- Soap molecules push water away = movement

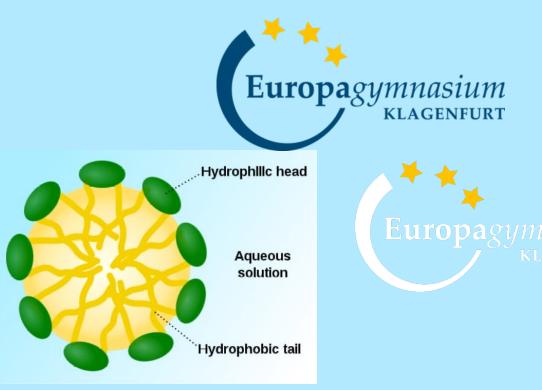


Figure 17. Structure of a micelle [https://en.wikipedia.org/wiki/Micelle]

- Tensides form micelles
 - heads of tensides on the outside and tails on the inside (fat gets trapped inside)
 - If soap is put in again = no/smaller reaction
 - Fat gets closed in by micelles
- Fat flees from the lipophobic heads

CHAPTER 04

TITRATION – Quantitative determination of lactic acid

QUESTIONS AND GOALS

Research questions:

- How much lactic acid is in yoghurt?
- How can we calculate the result of the titration?

Research goals:

• Understanding the principle of titr ation

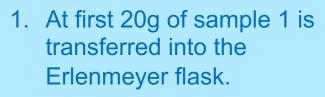
Europagymnasium

KLAGENFURT

• Calculating how much lactic acid is in yoghurt

MATERIALS

- Erlenmeyer flask
- Distilled water
- Indicator: phenolphtaleine
- Sample 1: yoghurt 3,5 % fat
- Sample 2: yoghurt 1 % fat



• Burette

- NaOH: sodium hydroxide solution with concentration = 0,1 mol/litre
- Pipettes + peleus ball
- Scales + spoon

Figure 18. Yoghurt [https://www.oekotest.de/static_files/images/article/Joghurt-selber-machen-ist-ganzunkompliziert- Shutterstock-Sea-Wave 11664 16x9.jpg]

- 2. 20ml of distilled water is added
- 3. Finally 5 drops of phenolphtaleine to the Erlenmeyer flask are added

PROCEDURE

Figure 19. Colour change during the reaction [photo taken by students]

- 4. Equivalence point: titrate with 0.1M NaOH (in the burette) until a weak pink colour appears
- 5. Read the volume in ml
- 6. Repeat the titration with sample 2

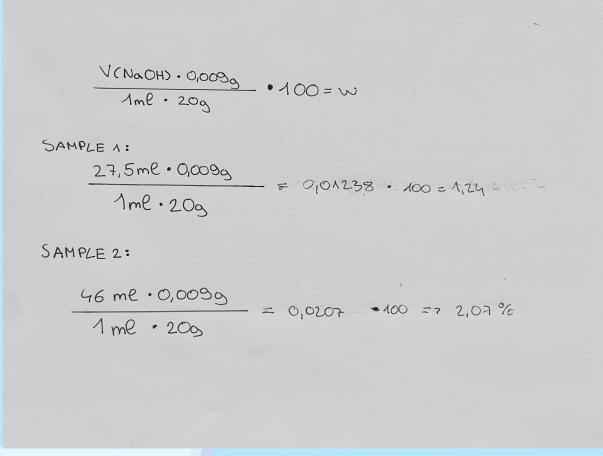
Figure 20. and 21. Videos of the titration [Videos taken by students]

The titration with NaOH to determine the lactic acid content of yoghurt

WHAT HAPPENED?

The sodium hydroxide neutralizes the lactic acid which is contained in the yoghurt until the equivalence point (dramatical pH-value change).

The indicator phenolphthaleine offers it in changing the colour to a weak pink which shows an alkaline pH-value


CALCULATION AND DISCUSSION

The lactic acid in yoghurt is produced by the lactic acid bacteria through fermentation.

The consumption of 1 ml sodium hydroxide solution, c (NaOH) = 0.1 mol/ L corresponds to a mass of 9 mg lactic acid.

Results:

Sample 1 contains 1,24% lactic acid. Sample 2 containa 2,07% lactic acid.

Europagymnasium

KLAGEN

Figure 22. Calculation of the titration [photo taken by students]

PROJECT RESULTS SUMMARY

- Learning scientific contents about the white gold milk
- Production of ricotta (cream cheese) and determination of milk proteins by Biuret reaction
- Experience and introduction to the subject of emulsions by means of experiments
- Studying the titration with the determination of lactic acid in whole milk
- Gaining scientific knowledge
- Experience practical laboratory work
- Improving teamwork

LITERATURE

Wie werden die Quellen angegeben?

Compound Interest (2018): https://www.compoundchem.com/2018/06/02/milk/ Autor (Jahr): URL--> siehe Padlet Autor (Jahr): URL--> siehe Padlet Autor (Jahr): URL--> siehe Padlet Autor (Jahr): URL--> siehe Padlet