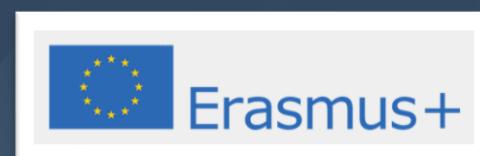


A Matter of Taste

Investigating Our Genome

I CONGRESO CIENTÍFICO INTERNATIONAL “EUROCIENCIA JOVEN”

5. & 6. de Mayo de 2025 Córdoba



Authors:

Coral Calabrese
Moritz Kallos
Jad Lahmar
Emilia Lichtenegger
Konstantin Pulvermacher
Hana Syed
Valentina Waldner
Marie Wintschnig

Head of Project & Scientific Supervision:

Mag.a Denisa SLADECEK

- Table of Contents

01 **Introduction**
Genetics in a Nutshell

02 **Creation of a Candy
DNA Model**

05 **Summary**
Long Story Short

03 **Experiment Nr. 1**
Extracting DNA from Different
Types of Fruits

04 **Experiment Nr. 2**
A Matter of Taste
Investigating our Genome

01

• Introduction •

Genetics in a Nutshell

DNA

What is DNA?

- Deoxyribonucleic acid
- Genetic material composed of 4 nucleotide bases

Where can we find DNA

- In the nucleus

What are the structural components of DNA

- Chromosome
- Chromatin
- Chromatid
- Centromere

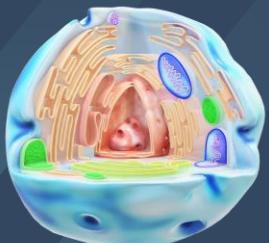
Chromosome

- Strands of DNA, encoded with genes and contain genetic information of the individual

Chromatin

- Mass of genetic material
- Composed of DNA
- Condenses during cell division

Chromatid


- One half of two identical copies of a replicated chromosome, which are joined together during cell division by centromere

Order of genetic material

Cell

Nucleus

Chromosome

DNA

Adenine
Cytosine
Guanine
Thymine

Gene

Nucleotide

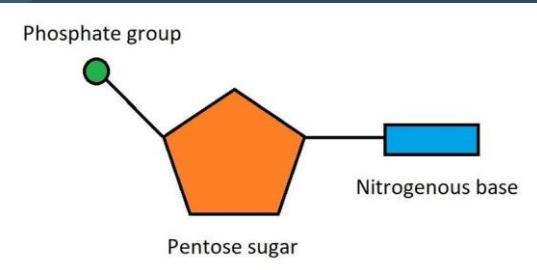


Fig: Nucleotide

02

•Candy DNA Model•

02

Candy DNA Model

Fig.1: The final DNA candy model

Fig.2: Materials

Materials:

- Soft candy in 4 colours (gummy bears, gum drops, or mini marshmallows)
- Rope like candy (Twizzlers)
- Toothpicks
- Paper & pen (or marker)
- Paper towel

03

•Experiment Nr. 1•

Extracting DNA from Different Types of Fruits

03

Extraction of DNA

Research question:
Can DNA be extracted from a kiwi?

Materials:

- Half of a kiwi or banana
- 4 tsp. 91% isopropyl alcohol – chilled
- $\frac{1}{2}$ tsp. of salt
- 2 tsp. washing – up liquid
- 100ml of water
- Teaspoon
- Freezer ziplock bag
- 1 plastic cup
- 1 coffee filter
- Small glass

Hypothesis:

Our prediction is that it will be possible to extract the DNA from the kiwi as well as to see it through the microscope.

Fig.3: Materials Experiment Nr. 1

03

Extraction of DNA

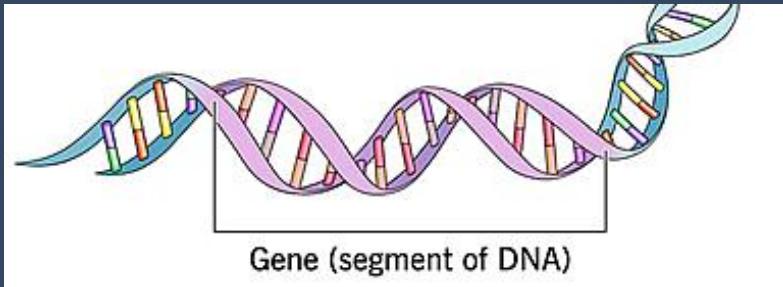
Observation:

- Pouring mixture into the beaker, seeds were separating from liquid
- DNA separated from the rest of liquid while adding alcohol

Fig.4: Kiwi DNA structures under the microscope

Fig.5: Separated DNA

Conclusion:

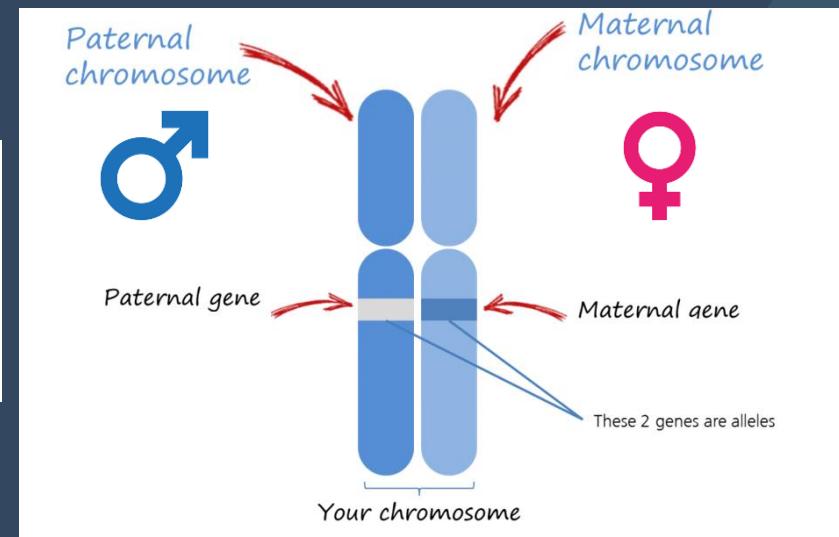

- The experiment confirms that kiwis contain DNA, which can be easily extracted.
- DNA becomes visible when many strands group together.
- The protective membranes must be broken to release the DNA.
- Alcohol makes DNA visible because it is not soluble in it.
- Such experiments aid genetic research on traits and heredity.

04

•Experiment Nr.2•

A Matter of Taste
Investigating Our Genome

04 Investigating our Genome - Theory



SNPs can lead to different versions of genes (alleles) that affect how proteins function.

- Taste is influenced by genetics, not just personal preference.
- 99% of DNA is identical; the 1% difference makes us unique.
- SNPs (Single Nucleotide Polymorphisms) affect traits like taste.
- The TAS2R38 gene determines sensitivity to PTC, a bitter compound in broccoli, kale, and Brussels sprouts

04 Inheritance of Genetic Information

Phenotype	Genotype		
Phenylthiocarbamide (PTC)	<i>TAS2R38</i> gene present in following form		
strong taster	T/T	<u>two dominant traits inherited from parents (maternal allele T and paternal allele T)</u>	Homozygote dominant
mild taster	T/t	<u>Each parent passes a different gene (dominant trait T and recessive trait t) to the offspring</u>	Heterozygote
non-taster	t/t	<u>two recessive traits inherited from parents (maternal and paternal allele t)</u>	Homozygote recessive

04

Investigating our Genome

Research question:
Is the personal taste perception linked to the genome?

Hypothesis:
According to the test person's perception of not liking broccoli that much and that it tastes bitter to them, we predict that the test person's genotype is heterozygote (Tt; mild taster) (e.g. Group 2)

Fig.6: Materials used in the experiment

04 Investigating our Genome

Materials (Reagents) :

- Extraction Buffer I: 50 μ L
- Extraction Buffer II: 50 μ L
- Hot-Start Mastermix: 12.5 μ L
- PTC Primer: 12.5 μ L
- BtsCI Restriction Enzyme: 0.5 μ L
- CutSmart Buffer: 2.5 μ L
- Gel-Loading Dye (6X): 2 μ L
- 100 bp DNA Ladder: 10 μ L per gel
- SYBR Green I (10,000x): 2 μ L per gel
- Agarose: 0.4 g per gel
- TBE Buffer: 20 g

Fig.7: Materials used in the experiment

Fig.8: Thermocycler

Fig.9: Centrifuge

Equipment:

- Thermocycler
- Gel electrophoresis equipment
- Transilluminator
- Microwave
- Centrifuge

Micropipettes and Pipette Tip Boxes:

- 2-20 μ L micropipettes
- Pipette tip boxes (2-200 μ L)
- 20-200 μ L micropipettes

Consumables:

- PCR tubes (1 mL and 0.2 mL)
- Syringes (1 mL)
- Pipette tips (2-200 μ L)
- Plastic shot glasses (40 cl)
- Gloves
- Saline solution
- Distilled water

Other:

- Permanent markers
- Plastic racks
- Styrofoam box with ice
- Cups (for disposing of pipette tips)
- Safety goggles

04

Investigating our Genome

Conclusion:

- The hypothesis was confirmed as true.
- The test person is a heterozygote (mild taster).
- DNA extraction and PCR help analyze genetics.
- DNA fragmentation and electrophoresis confirm differences.
- Taste perception varies based on genotype.
- Inherited genetic material influences taste sensitivity.

Fig.10: Gel electrophoresis equipment

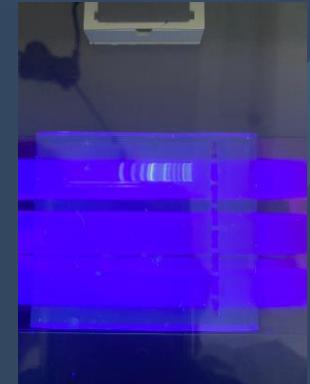


Fig.11: Gel Electrophoresis

04 Results

Experiment

Sample	Outcome	
	HYP.	RES.
Group 1	TT	Tt
Group 2	Tt	Tt

Experiment

Sample	Outcome	
	HYP.	RES.
Group 3	tt	?
Group 4	TT	TT

TT = homozygote dominant (strong taster)

Tt = heterozygote (mild taster)

Tt = homozygote recessive (non – taster)

05

•Summary•

Long Story Short

05 Summary

Candy DNA Model

Visualisation of the DNA double helix – it's structure and components

Experiment Nr. 1

Learning a way of collecting genetic material out of different fruits and gathering the knowledge that fruits have genetic material as well

Experiment Nr. 2

TASTE IS INFLUENCED BY GENETICS, which can be scientifically proved. But additionally there is the possibility that taste is influenced by culture and environment / surrounding

A Matter of Taste - Investigating Our Genome

I CONGRESO CIENTÍFICO INTERNACIONAL “EUROCIENCIA JOVEN”
5. & 6. de Mayo de 2025 Córdoba

Thank you for your attention!

**Head of Project &
Scientific Supervision:**
Mag.a Denisa SLADECEK

More from us:
Europagymnasium.klagenfurt

Authors:
Coral Calabrese
Moritz Kallos
Jad Lahmar
Emilia Lichtenegger

Konstantin Pulvermacher
Hana Syed
Valentina Waldner
Marie Wintschnig