



## RESEARCHES

<sup>1</sup>Romero-Martín, M.A.  
<sup>1</sup>López-García, R.

## STUDENTS

<sup>2</sup>Lomeña-Romero, M.  
<sup>2</sup>Mesa-Ruiz, J.  
<sup>3</sup>Ramos-Meseguer, D.  
<sup>3</sup>Sánchez Carrasco-Ayúcar, E.

## AFFILIATIONS

<sup>1</sup>University de Córdoba (UCO)  
<sup>2</sup>IES Fidiana (Córdoba)  
<sup>3</sup>IES Medina Azahara (Córdoba)

## COORDINATORS

<sup>2</sup>M.ª del Mar Moreda  
Moreno(mmormor806@iesfidiana.es)  
<sup>3</sup>Manuel Ojeda



## PHYTOPHTHORA, THE PLANTS DESTROYER

## INTRODUCTION

*Phytophthora cinnamomi* is an organism that affects our *dehesas* causing root rot in *Quercus*, leading indirectly to a scarce production of cork and ham, some of our region's economic power.

This study aims to evaluate the impact that this organism can have in trees like the cork oak, the holm oak and the hackberry, for the which there hasn't been made any further investigation about the illness repercussion, and compare between species for the sake of finding new methods for controlling the infection.

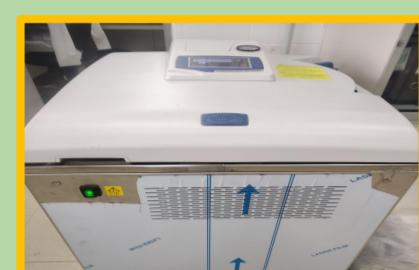



Figure 1. Autoclave



Figure 2. Laminar flow hood

## MATERIALS

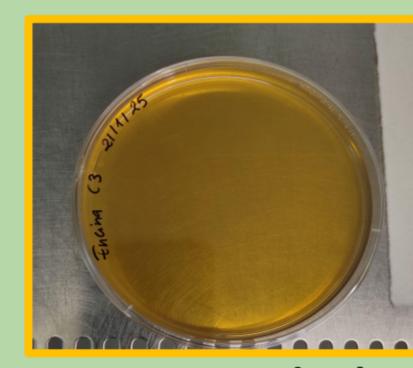



Figure 3. Petri dish



Figure 4. Alcohol burner



Figure 5. Scalpel

## OBJECTIVES

- Analyzing whether there is damage or not in the species of *Quercus ilex* (holm oak), *Quercus suber* (cork oak) and *Celtis australis* (hackberry) after being inoculated with *Phytophthora cinnamomi*.
- Comparing the damage produced in different species, if present.
- Interpreting and discussing the project's results and its most relevant conclusions.

## HYPOTHESIS

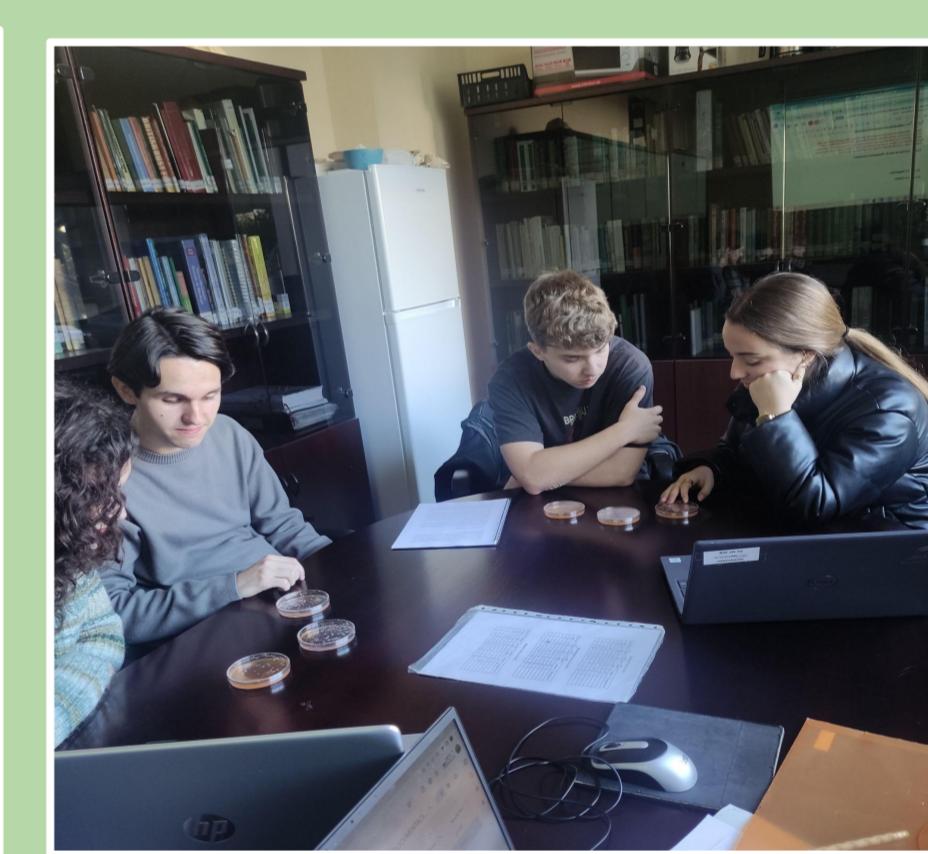
- The damage caused by *Phytophthora cinnamomi* is similar across all the used species (holm oak, cork oak and hackberry).
- The control branches (non-inoculated branches) don't show any damage produced by the pathogen.

## METHODS

• 1<sup>st</sup> SESSION

- Presentation of the organism *P. cinnamomi*, elaboration of the culture medium and seeding of *Phytophthora*.
- Visite of the facilities of the AGR-157 (UCOOLIVO) group.

• 2<sup>nd</sup> SESSION



- Preparation of the holm oak, cork oak and hackberry.
- Inoculation of *Phytophthora* and incubation in darkness chamber in controlled conditions.

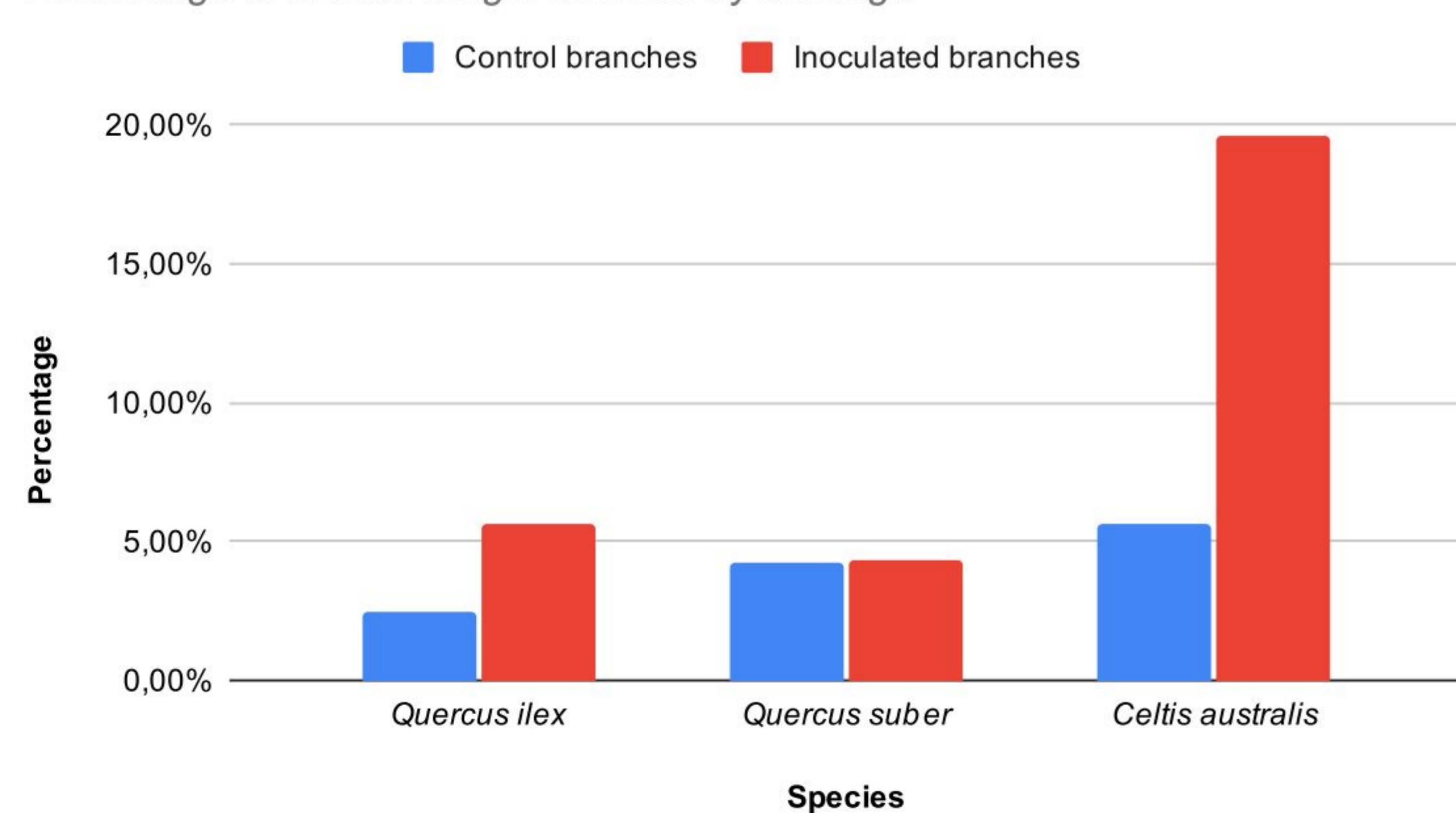
• 3<sup>th</sup> SESSION

- Uncovering of the samples, measurement of different aspects of the branches and evaluation of the damages.
- Isolation of the damages in selective culture medium.

• 4<sup>th</sup> SESSION

- Analysis of the results of the isolated samples.
- Evaluation of the data and results collected.




## RESULTS

| Holm oak ( <i>Quercus ilex</i> ) |                    |                   |                    |                       |         |
|----------------------------------|--------------------|-------------------|--------------------|-----------------------|---------|
| Branch number                    | Branch length (mm) | Branch width (mm) | Damage length (mm) | Damage percentage (%) | Ringing |
| C1                               | 245                | 6,28              | 5,5                | 2,24%                 | No      |
| C2                               | 215                | 6,51              | 5,5                | 2,56%                 | No      |
| C3                               | 202                | 6,07              | 5,5                | 2,72%                 | No      |
| 1                                | 220                | 10,05             | 12                 | 5,45%                 | No      |
| 2                                | 228                | 6,51              | 6,5                | 2,85%                 | No      |
| 3                                | 197                | 7,28              | 20                 | 10,15%                | No      |
| 4                                | 203                | 7,03              | 7                  | 3,45%                 | No      |
| 5                                | 220                | 8,53              | 14                 | 6,36%                 | No      |

| Cork oak ( <i>Quercus suber</i> ) |                    |                   |                    |                       |         |
|-----------------------------------|--------------------|-------------------|--------------------|-----------------------|---------|
| Branch number                     | Branch length (mm) | Branch width (mm) | Damage length (mm) | Damage percentage (%) | Ringing |
| C1                                | 209                | 7,74              | 13,2               | 6,32%                 | No      |
| C2                                | 202                | 6,35              | 6                  | 2,97%                 | No      |
| C3                                | 207                | 5,95              | 7                  | 3,38%                 | No      |
| 1                                 | 218                | 7,39              | 7,5                | 3,44%                 | No      |
| 2                                 | 216                | 4,48              | 5                  | 2,31%                 | No      |
| 3                                 | 210                | 7,07              | 6                  | 2,86%                 | No      |
| 4                                 | 204                | 7,87              | 20,5               | 10,05%                | No      |
| 5                                 | 213                | 9,53              | 6,1                | 2,86%                 | No      |

| Hackberry ( <i>Celtis australis</i> ) |                    |                   |                    |                       |         |
|---------------------------------------|--------------------|-------------------|--------------------|-----------------------|---------|
| Branch number                         | Branch length (mm) | Branch width (mm) | Damage length (mm) | Damage percentage (%) | Ringing |
| C1                                    | 220                | 10                | 11                 | 5,00%                 | No      |
| C2                                    | 240                | 7,87              | 15                 | 6,25%                 | No      |
| C3                                    | 225                | 7,14              | 13                 | 5,78%                 | No      |
| 1                                     | 233                | 7,64              | 21                 | 9,01%                 | No      |
| 2                                     | 230                | 6,87              | 69                 | 30,00%                | Yes     |
| 3                                     | 230                | 9,05              | 42                 | 18,26%                | Yes     |
| 4                                     | 202                | 8,35              | 50                 | 24,75%                | Yes     |
| 5                                     | 210                | 9,65              | 34                 | 16,19%                | No      |

## Percentage of branch length covered by damage



## CONCLUSIONS

- Lesions caused by *Phytophthora cinnamomi* are similar in the different species used (holm oak, cork oak and hackberry), although they may vary in size depending on the species. It has been observed that *Celtis australis* (hackberry) is more susceptible to the microorganism, not only because of the larger size of the lesions but also because of the presence of banding, absent in the other species analyzed.
- In the branches used as controls (non-inoculated branches) no lesions produced by the pathogen were observed, which shows that the lesions in the inoculated branches are caused directly by the infection and not by other factors.

## ACKNOWLEDGMENTS

We thank all those who have made this work possible, especially to all of IES Fidiana and to IES Medina Azahara for giving us this opportunity, among them the teachers Manuel Ojeda from IES Medina Azahara and María del Mar Moreda from IES Fidiana for guiding us and helping us at all times. We also thank the researchers M.ª Ángeles Romero and Rosa López, who have helped us in every step of the process, and the Department of Agronomy of the University of Córdoba for allowing us to use their facilities. Lastly, we thank our families for their unwavering support.